
 

 
 

 

 

 

 

 

 

 

Efficient Software 
Transactional Memory 
 

Robert Ennals 

IRC-TR-05-051 

 
 

1 

 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® 
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO 
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT 
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS 
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in 
medical, life saving, life sustaining applications. 
Intel may make changes to specifications and product descriptions at any time, without notice. 
 
Copyright © Intel Corporation 2003   
* Other names and brands may be claimed as the property of others.  



Efficient Software Transactional Memory

Robert Ennals

Intel Research Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

robert.ennals@intel.com

Abstract. Transactions offer a simple programming model that takes
much of the pain out of concurrent programming. Rather than having to
battle with a sea of locks, programmers need merely mark blocks of code
that they wish to execute atomically, and let their compiler and runtime
do the work of ensuring that the behaviour really is atomic.
We present a new algorithm for implementing efficient lightweight trans-
actions that we have found to significantly outperform the best previous
algorithms. When run on our 106-processor test machine, our algorithm
is almost five times as fast as the best previous algorithm under high
contention, almost twice as fast when using large data sets, and we have
yet to find a situation in which another implementation outperforms it.
As we explain in our paper, we achieve these results by trading off the-
oretical elegance for practical efficiency, and by taking care to minimise
cache contention.

1 Introduction

The benefits of transactions have been known in the database community for a
long time [7]. Transactions offer a simple programming model that takes much
of the pain out of concurrent programming. Programmers do not have to worry
about deadlock, livelock, data consistency, atomicity, priority-inversion, or lock
placement – in fact they barely have to think about concurrency at all [25].

While transactions provide the programmer with a very convenient program-
ming model, they also impose significant bookkeeping overheads on the proces-
sor. In the world of databases, these overheads are acceptable, since IO, not
processor speed, is typically the main factor limiting performance. However, for
most other applications the overhead of transactions has kept them out of general
use.

It seems that things may soon change. A number of groups have presented
designs for processors that can execute transactions in hardware [12, 20, 19, 21, 2].
Known as Transactional Memory, such designs avoid the bookkeeping overhead
normally associated with transactions and thus make them practical for general
purpose computing.

These hardware designs have been accompanied by a flood of programming
languages that use transactions as their primary concurrency control mechanism,
assuming that the underlying hardware and runtime will be able to implement



them efficiently. Several such languages have major industrial support, including
Cray’s Chapel [3, 5], IBM’s X10 [4], and Sun’s Fortress [24, 1].

This move towards transaction based programming has created a demand for
efficient software implementations of transactional memory. Known as Software
Transactional Memory (STM) [23, 15], such designs are needed for two reasons:

– To allow programs written with atomic transactions to run on existing hard-
ware that does not have transaction support.

– To act as a fall-back mechanism for cases in which the hardware transaction
implementation has exhausted it’s physical resources.

It is not practical to simply re-use transaction implementations from databases,
since Software Transactional Memory has very different requirements. Unlike
databases, STMs store all data in non-persistent main memory, and thus they
need not concern themselves with issues such as durability, distributed operation,
replication, logging, checkpointing, disk scheduling, and fault tolerance.

1.1 Our Contribution

On the modern multi-processor machines on which STM implementations are
designed to run, cache behaviour has a significant effect on performance [9].
Every time a processor attempts to access data that it does not have in its cache,
it must wait for potentially hundreds or even thousands of cycles. Moreover, if
two processors attempt to write to the same area of memory then the cache
line will bounce between the caches of the two processors, causing significant
slowdown.

In this paper we present a new object-based STM design that aims to max-
imise performance by minimising cache contention and memory bandwidth re-
quirements. We do this by making four significant deviations from previous STM
designs:

– Object versioning information is stored inline, removing the need for
a transaction to access additional cache lines in order to find the current
data for an object.

– Book-keeping information is always private to the thread that cre-
ated it, allowing it to stay in that processor’s cache.

– Book-keeping information is allocated sequentially, and its memory
is immediately re-cycled when a transaction completes (no need for
GC or ref counting), thus keeping it small and localised.

– We do not guarantee that a transaction will make progress while
another transaction is descheduled by the OS.

While allowing a transaction to be obstructed by descheduled transactions
is theoretically inelegant, we do not believe it is a problem in practice. If a
transaction t is obstructed by a transaction s, then t can send s a signal, asking
s to abort itself. If s is currently descheduled, then it will abort itself as soon as



the OS reschedules it. The only way that t can be permanently obstructed is if
the OS is starving s, but if the OS can starve s then it could also starve t1 and
so the STM has not made things any worse then they were before.

Although depending on properties of the operating system’s scheduling and
ability to send messages between transactions complicates the theoretical un-
derstanding of the algorithm, from a practical standpoint these seem simple and
common assumptions to make. We are after implementable efficiency and not
theoretical elegance.

One might worry that performance will degrade when the number of trans-
actions exceeds the number of processor cores, since there are more descheduled
transactions that can obstruct executing transactions. In section 4 we show that,
while performance does indeed degrade to some extent, it does not degrade by
much, and our STM implementation continues to beat its rivals even when the
number of transactions significantly exceeds the number of cores.

2 How It Works

The fundamental concurrency-control technique used by our algorithm is similar
to that used by DSTM [11]. We use revocable two phase locking [7] to manage
writes and optimistic concurrency control [13, 7] to manage reads:

– Revocable Two Phase Locking for Writes: Whenever a transaction t
wishes to write to an object o, it must first obtain an exclusive (but revoca-
ble) lock on o. Transaction t holds onto these locks until it either commits or
is forcibly aborted. If t wishes to write to an object that is locked by another
transaction, s, then t will either wait for s to finish, or steal the object by
forcing s to abort. Crucially: Revocable two phase locking does not
suffer from deadlock, and is thus able to use finer-grain locks than
would be practical with non-revocable locks.

– Optimistic Concurrency Control for Reads: Whenever a transaction
reads from an object, it logs the version of the object it saw. When the
transaction commits, it checks the current versions of all objects it read
and verifies that the versions it read are still current. Crucially: Unlike
read-locks, optimistic concurrency control does not cause multiple
readers to experience cache contention.

In the rest of this paper, we will use the following terms:

– Transaction: A block of code that the programmer wishes to execute atom-
ically.

– Processor: A CPU, hyper-thread [16], or core on a multi-core chip.
– Object: A block of data2 that is manipulated by the user program — such

objects would exist even in the absence of a transaction system.
1 It may be necessary to use priority inheritance to ensure that if t can be scheduled

then s can also be scheduled.



– Valid: A transaction is valid if none of the objects it read optimistically
have been changed by another transaction since it read them.

– Commit: If a transaction completes its work, and is valid, then it can com-
mit, at which point it will atomically make visible all of the changes it made
to objects.

– Obstructed: A transaction t is obstructed by a transaction s if s prevents
t from making progress.

– Abort: If a transaction t obstructs another transaction then t may be
aborted. After a transaction has aborted, the program state will be as if
it never executed.

– Retry: After abortion, a transaction will usually re-try its execution, re-
peating the entire operation from the start.

2.1 Memory Layout

Figure 1 illustrates the memory layout used by our algorithm. Unlike previous
STMs, we divide memory into three categories:

– Public Memory: can be accessed by any transaction. This area contains
only objects.

– Private Memory: Each transaction has its own region of private memory
that only that transaction can access. This memory is used for storing book-
keeping information, in the form of read and write descriptors (Figure 1).

– Semi-Private Memory: Each transaction t has its own region of semi-
private memory is which it stores its transaction descriptor. This descriptor
is only used when there is a conflict between two transactions, as discussed
in Section 2.6.
Given a pointer into a transaction’s private memory, one can obtain a pointer
to the corresponding transaction descriptor by zeroing the low order bits3 of
the pointer (Figure 1).

All data in private memory is allocated cheaply on a thread-local stack that
is re-used by the next transaction to start on the same thread. This is possible
since this data cannot be seen by other transactions and is not freed until the
transaction commits.

Tests show that our STM design causes very little cache-miss overhead rel-
ative to a non-STM program. Cachegrind [18] simulation reveals that the vast
majority (typically ∼99.5%) of cache misses are in public memory. Private mem-
ory is relatively small and rapidly recycled, and so we expect it to stay in the
local processor cache. Semi-Private memory is tiny and we expect it to only be
accessed very rarely.
2 This might be a C struct, C++ object, dynamically allocated block, or other data

construct. An object can of course contain pointers to other objects.
3 If private memory grows very large, then this can instead point to an indirection to

the descriptor.



Object

Handle

Object Data

References

Last Version

Object Pointer

Working Copy
of Data

Write Descriptor

Public memory Private Memory

Ignore low-order bits

Object

Handle

Object Data

References

Version Seen

Object Pointer

Read Descriptor

*

*

Semi-Private Memory

Transaction Descriptor

Writes

Reads

Scheduler Info

Fig. 1. Memory Layout

Relative to the original non-STM program, the only data we add to public
memory is an additional handle field on each object. This field is adjacent to
the object data, and so is likely to be in the same cache line. The meaning of
the handle depends on its lowest order bit. If the lowest order bit is 1 then the
handle is a version number, otherwise it is a pointer to a write descriptor:

– Version number v: no transaction currently has a lock on the object. The
object data is version v of the object4.

– Pointer to a write descriptor w: the object is locked by a transaction t
and w is a pointer to a write descriptor in t’s private memory. (Figure 1)

2.2 Writing Objects

To write to an object o, a transaction t follows the algorithm given in Figure 2.
The function ”get write pointer” is not visible to the programmer. It represents
the code that must be executed every time the user’s code writes to an object,
in order to get a pointer to the object’s writable data.

Object o’s handle h tells t whether o is locked, and if so by who. If o is
unlocked then the bottom bit of h will be 1 and h will be a version number. If
o is locked, then the bottom bit of h will be 0, h will be a pointer to a write
descriptor, and t can find the identity of the transaction that owns o by zeroing
the low order bits of h.

To write to o, t must obtain an exclusive lock on o and produce a private
working copy of o’s data that it can write to. If o is already owned by t then
t can use the working copy that it created earlier, otherwise t must lock o and
create a new working copy.

If o is currently unlocked then t locks it, using an atomic compare-and-swap
operation to replace o’s handle with a new write descriptor. This write descriptor
4 Version number roll-over is fine, provided our scheduler ensures that no more than

two billion transactions commit while another transaction is active.



get_write_pointer(t,o){

h = o->handle;

if(is_locked(h) && handle_owner(h) == t){

return &(((writedesc*)(h->handle))->data);

}else{

writedesc = new write_descriptor;

v = wait_for_object(o,writedesc);

writedesc->last_version = v;

writedesc->object_pointer = o;

writedesc->data = o->data;

return &(writedesc->data);

}

}

wait_for_object(o,writedesc){

while (true) {

h = o->handle;

if(is_unlocked(h)){

if(writedesc != NULL)

compare_and_swap(&(o->handle),h,writedesc);

wakeup_any_in_wakeup_list();

return h;

}else{

s = get_handle_owner(h);

switch(ask_contention_manager_what_to_do(us,s)){

case KILL_THEM:

send_abort_signal(s);

wait_for_ack_signal(s);

add_to_wakeup_list(s);

break;

case WAIT_UNTIL_FINISHED:

wait_until_finished();

break;

case WAIT_A_LITTLE:

sleep_briefly();

break;

}

}

}

}

when_receive_abort_signal(sender,receiver){

abort(receiver);

send_ack_signal(sender);

wait_for_wakeup_signal();

restart_from_the_beginning(receiver);

}

Fig. 2. Pseudocode for obtaining a write pointer



has its last-version field set to the version that o had before t locked it and has
its working copy initialised to the current version of o’s data.

If o is currently locked by another transaction s then t asks the contention
manager how the conflict should be resolved. The contention manager will tell
t to either kill s, wait for s to complete, or wait for a short time and then try
again.

If the contention manager says that t should kill s then t sends s a signal,
asking it to abort. Once t has acquired o, t will send s another signal, telling it
to restart. This second signal is necessary in order to prevent a race condition
in which s restarts and re-acquires o before t has had a chance to do so.

It is the responsibility of the contention manager to ensure that deadlock and
livelock cannot occur. Our contention manager avoids deadlock by placing trans-
actions in a total order and decreeing that a transaction t waits for higher priority
transactions and kills lower priority transactions. Our contention manager also
avoids livelock; if t is the highest priority transaction then t must eventually suc-
ceed in acquiring o since eventually all transactions that conflict with t will have
been aborted by t and will be waiting for t to acquire o. Other contention man-
agers may use other techniques, including exponential back-off [11] and deadlock
detectors.

There is no guarantee that the transaction s that t aborts is the same trans-
action that obstructed t; however this does not affect our progress guarantees. It
may be that s committed and its descriptor was reused by a new transaction in
the time between t observing that it was obstructed and t sending s an abortion
signal. This is not a problem as the runtime system ensures that a transaction
descriptor can only be reused by a transaction of the same or lower priority, so,
while t can abort the wrong transaction, t can never abort a transaction of lower
priority.

2.3 Reading Objects

get_read_pointer(t,o){

h = o->handle;

if(handle_owner(h) == t){

return &(((writedesc*)(h->handle))->data);

}else{

readdesc = new read_descriptor;

v = wait_for_object(o,NULL);

readdesc->version_seen = v;

readdesc->object_pointer = o;

return &o->data;

}

}

Fig. 3. Pseudocode for obtaining a read pointer



To read an object o, a transaction t follows the algorithm given in Figure 3. If
t already owns o then t reads from the working copy that it created previously.
If o is unlocked then t reads from o’s current data. If o is locked by another
transaction then t resolves the conflict using the same procedure as used for
writing.

Every time a transaction reads an object, a note is made of the version that
the transaction saw. These versions are checked at commit (Section 2.4) to ensure
that another transaction did not write to an object while t was reading it.

2.4 Committing

commit(t){

for each read descriptor r{

if(r->object_pointer->handle != w->version_seen){

abort(t);

restart_from_the_beginning(t);

}

}

block_abort_signal();

for each write descriptor w{

w->object_pointer->data = w->data;

w->object_pointer->handle = next_version(w->last_version);

}

free_all_read_and_write_descriptors(t);

unblock_abort_signal();

}

Fig. 4. Pseudocode for commiting a transaction

To commit, a transaction t follows the algorithm given in Figure 4. Transac-
tion t first checks that no other transaction has written to any of the objects that
it read. Then it makes its writes visible by copying across its working versions
and setting the object handles to new versions.

There is a risk that t may be obstructed by a lower priority transaction s
that writes to objects that t reads from. To avoid this problem, if t fails its read-
check more than a fixed number of times, the runtime system tells t to retry
using two-phase-locking for reads.

Unlike DSTM [11] the commit operation is performed by exposing each writ-
ten object in sequence, rather than atomically flipping a status word that tells
other transactions to look at t’s private data. This allows us to avoid an extra in-
direction, keep bookkeeping data private, and immediately reuse descriptors in a
new transaction without worrying that another transaction might be referencing
them.



The downside of this policy is that, unlike DSTM, once t has started to
commit, it must be allowed to finish committing, even if it is obstructing higher
priority transactions. Any abort signals from other transactions will be ignored
while a transaction is in its commit phase. In practice, this is not a problem
as the commit phase lasts for a bounded time and is usually very quick. Even
if t is descheduled while committing, the OS will usually reschedule it again
quite soon. Standard priority-inheritance techniques can be used to ensure that
a low-priority transaction is rescheduled promptly if high-priority transactions
are waiting for it.

Like other STMs that use optimistic concurrency control for reads [11, 6], it
is necessary for the runtime to periodically check that all transactions are valid
and abort any that are not. If this was not done then a transaction might go
into an infinite loop as a result of having seen inconsistent data. Similarly, a
transaction that segfaults can retry if it is found to be invalid [6].

2.5 Aborting

abort(t){

for each write descriptor w{

w->object_pointer->handle = w->last_version;

}

free_all_read_and_write_descriptors(t);

}

Fig. 5. Pseudocode for aborting a transaction

To abort, a transaction t follows the algorithm given is Figure 5. The trans-
action iterates through all the objects that it has exclusive locks on and sets
their handles back to what they were before it locked them.

2.6 The Contention Manager

Like DSTM [11], our STM separates the mechanism of implementing transac-
tions from the policy of what should be done in the case of a conflict, placing
the latter decision in a separate contention manager.

Our standard contention manager works by placing all transactions in a total
order based on the lexical ordering of their user-assigned priority and the time
at which they started. If two transactions have the same user-assigned priority
then the transaction that started earlier will be considered higher priority.

If a transaction t is obstructed by a transaction s of higher priority then the
contention manager will tell t to wait for s to finish (WAIT UNTIL FINISHED).
If t is obstructed by a transaction r of lower priority then t will be obstructed



Handle

Object Data

Header

Inplace 
(our STM)

One Indirection 
(Fraser)

Object Data

Header

Two Indirections 
(DSTM)

Object Data

Locator

Fig. 6. How many indirections are needed to find object data?

to wait briefly (WAIT A LITTLE), and then forcibly abort r if r has not yet
completed (KILL).

This contention manager guarantees that a transaction can never be per-
manently obstructed by a lower priority transaction, and guarantees that the
system cannot deadlock or livelock. It does not however guarantee that the sys-
tem is lock-free [12], since a non-terminating high-priority transaction can block
all other transactions. If we did not allow a non-terminating hi-priority transac-
tion to block lower priority transactions then we would have to allow low priority
transactions to abort terminating high priority transactions – since one cannot
generally tell whether a transaction will terminate.

In our design we have made the deliberate decision to chose to honor trans-
action priorities, rather than to provide lock-freedom. This may not be the right
choice for all situations, and only experience will tell whether this is the right
trade-off to make. If a programmer wishes to ensure that non-terminating trans-
actions cannot block others, then they can impose a resource bound on their
transactions.

3 Related Work

Although a number of people have proposed algorithms for software transac-
tional memory, no STM that we are aware of has applied the key principles
that motivate our design (Section 1.1). None have attempted to place the object
handle in the same cache line as the object data, none have kept book-keeping in-
formation in private memory, and none have managed book-keeping information
on a stack.

This does not mean that our design is necessarily better than previous work.
Most of the previous STM designs have been significantly more theoretically
elegant than our work, often having properties such as lock-freedom [12] and
wait-freedom [10] that our design does not have. With our design we made a
deliberate decision to trade off theoretical elegance for performance.

3.1 Object-based STMs

DSTM [11] represents an object using a pointer to a locator, which in turn
points to the current object data. This triple-indirection requires a transaction
to load three cache lines in order to access an object - even if it is only reading
it (Figure 6).



Fraser’s STM [6] uses optimistic concurrency control for both reads and
writes. Fraser represents an object using a locator which points to the objects
current data – requiring the loading of two cache lines for every read and write
(Figure 6). Fraser estimates that this lower level of indirection is responsible for
the bulk of his performance advantage over DSTM [6]. A key feature of Fraser’s
algorithm is its use of helping. If a transaction is obstructed by a another trans-
action then it will help the other transaction to commit. While this prevents
transactions being obstructed by descheduled transactions, we have found that
it degrades performance in practice (Section 4).

3.2 Word-based STMs

Word-based STMs [8, 23] perform concurrency control at the granularity of ma-
chine words, rather than objects. It is thus necessary to place book-keeping
information in a separate location — requiring an additional cache line. More-
over, handles are typically placed closely together and so false contention may
occur.

Moir’s STM [17] is similar to both DSTM and word-based STMs. Moir divides
his memory into fixed-size blocks, each of which is controlled by a handle word.
Unfortunately for cache-performance, not only is the control information stored
away from the block, but it is necessary to follow an indirection in order to find
the current version of a block.

4 Performance Evaluation

To ensure the fairest comparison with other STMs, we asked Keir Fraser to
benchmark our algorithm for us on the exact same setup as he used to benchmark
his STM [6]. These tests were performed using the same machine, the same
benchmarks, the same workload, and the same DSTM implementation as he
used in his thesis [6].

The machine on which tests were run is a SunFire 15K server populated
with 106 UltraSparc III processors, each running at 1.2Ghz. The benchmarks
are Fraser’s red-black tree and skip-list programs, both of which read and write
random elements in a set. The benchmarks are run with a mix of 75% reads
and 25% writes (which Fraser argues is representative of real programs). Perfor-
mance is compared against Fraser’s STM [6] and Fraser’s C re-implementation5

of DSTM [11]6 — which are currently established as the two best performing
STM implementations [14, 6]. More details of the setup are provided in Fraser’s
thesis [6].

Figure 7 shows the performance under low contention, with the red-black tree
benchmark on the left and the skip-lists benchmark on the right. Here, the bench-
marks are run with a large data set (219 objects) ensuring that the transactions

5 The original implementation is in Java, and so could not have been fairly compared.
6 Using the POLITE contention manager.



Red-Black Trees Skip Lists

 0

 5

 10

 15

 20

 10  20  30  40  50  60  70  80  90

C
P

U
 ti

m
e 

pe
r o

pe
ra

tio
n 

/ µ
s

Processors

New
Fraser
DSTM

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90

C
P

U
 ti

m
e 

pe
r o

pe
ra

tio
n 

/ µ
s

Processors

New
Fraser
DSTM

Fig. 7. Scalability under low contention (key space of 219)

Red-Black Trees Red-Black Trees (zoomed)

 0

 100

 200

 300

 400

 500

 600

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e 

pe
r o

pe
ra

tio
n 

/ µ
s

Mean set size

New
Fraser
DSTM

 0

 10

 20

 30

 40

 50

 60

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e 

pe
r o

pe
ra

tio
n 

/ µ
s

Mean set size

New
Fraser
DSTM

Fig. 8. Performance under varying contention (90 processors)

rarely attempt to read or write the same object [6]. Our algorithm consistently
takes around 50%-60% of the time taken by Fraser’s STM and around 35% of
the time taken by DSTM. In this case we believe that our algorithm wins by
requiring a processor to load fewer cache lines than the other algorithms. Indeed,
the processor performance counters tell us that, per transaction, our STM incurs
only 41% of the L2 misses, 58% of the L1 misses, and 22% of the TLB misses
incurred by Fraser’s STM.

Figure 8 shows performance under varying contention. Here, the number of
processors is kept static at 90 and the data set size is varied from 16 to 219

elements. Smaller data sets cause greater contention as transactions are more
likely to attempt to manipulate the same element. Under high contention DSTM
copes poorly and comes close to livelock, while Fraser’s STM is almost five times
slower than ours. It is possible that DSTM would perform better if a different
contention manager was used [22].

We believe that the poor performance of Fraser’s STM is due to its use of
helping7. If a transaction is blocked by another, then it will “help” the other
transaction to complete. In practise it is better to simply wait for the other
transaction to finish of its own accord. If transactions help each other then one



 0

 2

 4

 6

 8

 10

 10  20  30  40  50  60  70  80

O
ve

ra
ll 

tim
e 

pe
r o

pe
ra

tio
n 

/ µ
s

Active Tasks

New
Fraser

Fig. 9. Performance as task count increases (4 cores, key space of 219, red-black trees)

can end up with 90 processors all trying to perform the same commit operation
and all fighting over the same cache lines.

Figure 9 shows performance under varying numbers of tasks. These tests
were done on a 4-way SPARC machine, rather than the 106-way machine used
for the previous tests – in order to provoke the operating system into context
switching between our tasks. As the number of tasks increases, context-switches
during transactions become more common, transaction conflicts increase, and
performance generally decreases. Our STM is affected more than Fraser’s, since
it allows a switched out transaction to block others; however our STM remains
the fastest, even when there are 20 transactions per processor.

5 Conclusions

We have presented an implementation of Software Transactional Memory that
significantly improves on the performance of previous algorithms while guaran-
teeing that no transaction can be permanently obstructed by a lower priority
transaction. We believe that people interested in implementing transactional
memory in software should seriously consider using our algorithm.

As further work, we plan to explore how our algorithm could be integrated
with existing proposals for hardware transactional memory, such that software
and hardware transactions can execute simultaneously and transactions can
smoothly transition between hardware and software modes.

Availability

Our implementation is available on SourceForge at http://sourceforge.net/
projects/libltx. The source files used in our benchmarks can also be found
at that URL.
7 At one point we experimented with a version of our algorithm that had helping,

and preliminary results suggested that its high-contention performance was similar
to Fraser’s STM.



Acknowledgements

We would like to thank Keir Fraser for providing us with his STM implemen-
tation and for benchmarking our algorithm on his testbed. We would also like
to thank Richard Bornat, Michael Fetterman, Keir Fraser, Tim Harris, Maurice
Herlihy, Gianlucca Iannaccone, Anil Madhavapeddy, Alan Mycroft, Matthew
Parkinson, Ravi Rajwar, Bratin Saha, Ripduman Sohan, Richard Sharp, and
Eben Upton for making useful suggestions.

References

1. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr,
G. L., and Tobin-Hockstadt, S. The Fortress Language Specification. Sun
Microsystems, Inc., July 2005.

2. Ananian, C. S., Asanavi’c, K., Kuszmaul, B. C., Leiserson, C. E., and Lie,
S. Unbounded transactional memory. In Proceedings of the 11th International
Symposium on High Performance Computer Architecture (HPCA’05) (Feb. 2005).

3. Callahan, D., Chamberlain, B. L., and P.Zima, H. The cascade high pro-
ductivity language. In Proceedings of the 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (HIPS’04) (Apr.
2004).

4. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von
Praun, C., Saraswat, V., and Sarkar, V. X10: An object oriented approach
to non-uniform cluster computing. In Proceedings of the ACM SIGPLAN Confer-
ence on Object Oriented Systems Languages and Applications (OOPSLA’05) (Apr.
2005).

5. Cray Inc. Chapel Specification 0.4. Cray Inc, Feb. 2005.

6. Fraser, K. Practical Lock Freedom. PhD thesis, University of Cambridge, 2003.

7. Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

8. Harris, T., and Fraser, K. Language support for lightweight transactions. In
Proceedings of the 18th Annual ACM-SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA ’03) (Oct. 2003).

9. Hennessy, J. L., Patterson, D. A., and Goldberg, D. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2002.

10. Herlihy, M. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13, 1 (Jan. 1991), 124–149.

11. Herlihy, M., Luchangco, V., Moir, M., and Scherer, W. Software trans-
actional memory for dynamic-sized data structures. In Proceedings of the 22nd
Annual ACM Symposium on Principles of Distributed Computing (PODC ’03)
(July 2003), pp. 92–101.

12. Herlihy, M., and Moss, J. E. B. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the 20th Annual International Sym-
posium on Computer Architecture (ISCA ’93) (May 1993), ACM Press, pp. 289–
301.

13. Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency
control. ACM Transactions on Database Systems 6, 2 (June 1981), 213–226.



14. Marathe, V. J., Scherer, W. N., and Scott, M. L. Design tradeoffs in mod-
ern software transactional memory systems. In Proceedings of the Seventh ACM
Workshop on Languages, Compilers and Run-time Support for Scalable Systems
(Oct. 2004).

15. Marathe, V. J., and Scott, M. L. A qualitative survey of modern software
transactional memory systems. Tech. Rep. TR839, University of Rochester, June
2004.

16. Marr, D., Binns, F., Hill, D., Hinton, G., Koufaty, D., Miller, J., and
Upton, M. Hyper-Threading technology architecture and microarchitecture. Intel
Technology Journal 6 (2002).

17. Moir, M. Transparent support for wait-free transactions. In Distributed Algo-
rithms, 11th International Workshop (Sept. 1997), vol. 1320 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 305–319.

18. Nethercote, N. Dynamic Binary Analysis and Instrumentation. PhD thesis,
University of Cambridge, Nov. 2004.

19. Rajwar, R., and Bernstein, P. A. Atomic transactional execution in hardware:
A new high performance abstraction for databases. In Proceedings of the 10th
Workshop on High Performance Transaction Systems (Oct. 2003).

20. Rajwar, R., and Goodman, J. R. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In Proceedings of the 34th ACM SIGMICRO
International Symposium on Microarchitecture (Dec. 2001).

21. Rajwar, R., Herlihy, M., and Lai, K. Virtualizing transactional memory. In
Proceedings of the 32nd Annual International Symposium on Computer Architec-
ture (ISCA) (June 2005).

22. Scherer, W. N., and Scott, M. L. Contention management in dynamic soft-
ware transactional memory. In Proceedings of the Workshop on Concurrency and
Synchronisation in Java Programs (July 2004).

23. Shavit, N., and Touitou, D. Software transactional memory. In Proceedings of
the 14th Annual ACM Symposium on Principles of Distributed Computing (PODC
’95) (Aug. 1995), pp. 204–213.

24. Steele, G. Parallel programming and parallel abstractions in fortress. In Pro-
ceedings of the fourteenth conference of Parallel Architectures and Compilation
(PACT’05) (Sept. 2005).

25. Weikum, G., and Vossen, G. Transactional Information Systems: Theory, Al-
gorithms, and the Practice of Concurrency Control. Morgan Kaufmann, 2001.


