
Feris: A Functional Environment for
Retargetable Interactive Systems

Robert Ennals

King’s College, Cambridge University,
rje33@cam.ac.uk

Abstract. Feris is a library and runtime environment for creating in-
teractive programs. Programs written using Feris may be run as GUI
applications, but also in other ways, such as as web pages, text mode
applications, or embedded in another program.
In addition to being of practical use in itself, Feris demonstrates a pro-
gramming model based on translation between different abstractions,
and an approach to interfacing functional languages with the outside
world. The core of the system is a network of translators that translate
between different abstractions. Applications can describe their interface
in terms of whatever abstractions they like (e.g. diagrams or actions),
and low level environments can describe their interface using another set
of abstractions (e.g. pixels or text), and translators to translate between
them.
Also noteworthy is that Feris programs cannot directly perform actions
on global state, even when working with files.

1 Introduction

It is often useful for computer programs to have some way of interacting with
a user. Usually this is done using a Graphical User Interface (GUI). However
there are many other ways in which a program can interact with a user, including
speech driven systems, command line programs, web pages and embedding inside
another program. Additionally, there are many ways in which the same program
could be presented in any of these environments. For example, one might want
to have different types of GUIs for experts, beginners, or the partially sighted.

A typical GUI based application will hold inside it some data that is being
worked on. For example it might be an equation editor that has stored inside it
some representation of an equation. In order to talk to an external GUI envi-
ronment, this data needs to be translated into low level data such as pixels and
basic GUI widgets.

The popular convention has been to do this translation inside the application.
For example the app may apply a function to its high level equation description
to obtain a bitmap that represents it. The disadvantage of this approach is
that the only information available to the external environment is this low level
information, and this is too target specific to be easily used for an alternative
target such as a speech or web interface.

High Level Data

GUI Environment

Low Level Data

App

High Level Data

GUI Environment

Low Level Data

App

Translator

Fig. 1. Moving the translation from high level data to low level data outside the ap-
plication

Feris takes an alternative approach. The application exports its high level
data (which can be in any format) to the outside world. This is then translated
into low level data by a set of translators that live outside the application and are
managed by the environment. This difference is illustrated by figure 1. Moving
this translation outside of the application allows the environment to take control
of the process and handle low level targets that the application may not have
been aware of.

Popular existing systems such as COM/ActiveX/OLE [4], GTK [17], and
Java’s Swing [19] go a little way in this direction, but are more coarse grained,
more GUI specific, and give more control to the application instead of to the
environment.

1.1 Contributions

The key contributions of this work are the following:

– A programming model based on layers of translators, translating between
interactive objects. In this model translators, applications, and components
are all the same thing.

– The ability to retarget a single application to many types of interface, in-
cluding such things as GUIs, Speech, and The Web, without going through
a lowest common denominator. (We don’t translate GUIs to web pages, or
web pages to GUIs. We translate applications to both.)

– The ability to extend the retargeting mechanism in a modular way. New
targets, and ways of translating into targets can be implemented by third
parties, with only the lowest level environment interfacing needing to be
done outside the core Feris system.

– A monad of callbacks, allowing translators to work with the objects they are
translating, without giving them the full destructive power of the IO monad.

– An alternative approach for interfacing with the outside world, without using
foreign language calls or global effects.

– The production of a usable implementation of this system

Fig. 2. The Number Edit App as a GTK GUI

2 Why a Functional Language?

Feris has been implemented around a simple strict functional programming lan-
guage called Oval, however it is planned to port it over to Haskell. To aid read-
ability, and to avoid having to explain Oval in this paper, all source code given
in this paper has been edited to be valid Haskell. The only changes required were
minor syntactic issues.

The primary reason for using a functional language was Monads. Monads
can be used to allow one to create translators that can have effects on objects
they are translating, without being able to perform global effects. First class
functions were also a major attraction.

3 A First Example

Figure 2 is a screenshot of a program called numedit app running in the Feris
GTK [17] environment. It has an integer variable, and allows this integer to
be increased and decreased by pressing two buttons. The source code for this
program is given below:

1: data NumEdit = NumEdit (Var Int)

2: numedit_ui :: Registry -> NumEdit -> CB Group
3: numedit_ui _ (NumEdit num) = return $ Group[
4: dy $ Number num,
5: dy $ Action "+" $ update (\x -> x+1) num,
6: dy $ Action "-" $ update (\x -> x-1) num]

7: numedit_app :: CB NumEdit
8: numedit_app = do
9: num <- new 123

10: return $ NumEdit num

Let’s break down what this program is actually doing.

– Line 1 declares a new datatype called NumEdit. This is an abstract descrip-
tion of a number that the user is able to edit, and says nothing about how
this editing should take place.

– Line 2 is declaring the translator function that is to produce a user interface
for a NumEdit.

– Line 3 returns as the result a group containing a number and two actions.
This group is a description of a UI that the environment should present to
the user. Each member is a UI control that should be be displayed.

– Line 4 describes a number item in the group. Number constructs a UI element
that continuously displays the value of the given Var Int. dy is used to
convert each UI item into a dynamic type, so that UI controls of different
types can be put into one list.

– Line 5 describes an action item in the group. Action constructs a button that
is labelled by the given text, and reacts to being clicked on by performing
the given action. In this case, the action is to update num by applying an
increment function to it.

– Line 6 does essentially the same thing as line 5, but creates a button to
decrement the integer, rather than to increment it.

– Line 7 defines a simple top level procedure. Its body is a command of type
CB Group that creates a numedit object for the environment to display.

– Line 9 creates a new editable number called num, with initial value of 123.
This is the number that will be edited by the user.

This program makes use of the following externally defined types and func-
tions:

dy :: a -> Dynamic
update :: (a -> a) -> Var a -> CB ()
new :: a -> CB (Var a)
data Number = Number (Var Int)
data Action = Action String (CB ())
data Group = Group [Dynamic]

4 Running Programs

A running program will generally consist of three components (see figure 3).

– The Application itself (e.g. numedit app)
– A set of translators
– A target environment (e.g. GTK GUI)

The application, and the translators are all dynamically loadable objects,
and can be loaded in arbitrary combinations, and used with arbitrary target
environments.

The application is a program, such as numedit app, that provides a descrip-
tion of something that it wishes to have displayed. The description provided by
the application is very high level, and not specific to any particular target envi-
ronment. It may well use data structures defined specifically for that particular
application.

The target environment is a low level C program that has the job of working
with external libraries and the operating system in order to allow interaction

App

General Translators

Target Specific Translators

Target Environment

Fig. 3. Modules Involved in Running an App

complex type

intermediate type

low level type
translator 2

translator 1

Fig. 4. The registry may apply several translators in series to do a complete translation.

with the outside world. The target environment needs to be given a very low
level, target specific description of the interface it is presenting.

The application and the target use different sets of data structures to describe
the user interface. It is thus necessary to translate between these two descriptions
in order to allow them to interoperate. This is done by the of translators. In most
cases, the translators are where the majority of the work will be done.

5 The Translator Registry

Translators convert between different types of data. Each translator has a source
type and a destination type. Given an object of the source type, they can produce
a corresponding object of the destination type. These two objects are linked such
that any change made to one of these objects causes a corresponding change to
be made to the other object (we ignore for the moment, the concept of one way
translators). They thus behave like two views of one object.

Translations are managed by a translator registry. This registry has a table
for each target it knows about (e.g. GTK, and Speech). This table maps each
type it knows about to a function that can be applied to it to get it closer to
the type that the target wants. A single translator will not necessarily take us
all the way to our desired type. In the general case, one will need to apply the
translation table several times in order to get something of the correct type for
the target. This is illustrated in figure 4.

The current interface to the registry is given below. In order to translate
an object from its current type, to the destination type for a target, one calls
the translate function. In addition to the object to be translated, this func-
tion is also passed a registry from which to obtain the translation table and a

Registry

GTK GUI − Beginner

GTK GUI − Expert

Speech

Web

Source Type

group

number

action

Translator

grptogtk

numtogtk

acttogtk

gtkitem FINAL

Fig. 5. A simple translator registry, with the GTK target expanded

string identifying the target that we are interested in. The Registry can contain
translator tables for several different targets (see figure 5).

data Registry = ...
data Trans = Trans Dynamic | Final

translate :: Registry -> String -> Dynamic -> CB (Maybe Dynamic)
addtrans :: Registry -> String -> String -> Trans -> Registry

Strings are arguably an ugly way to identify translation targets. It is planned
that a more elegant solution will be used in future.

6 Types

Some may consider it to be cause for concern that translate inputs and outputs
objects of type Dynamic, and that type Dynamic is used to store objects of
different types in Groups.

As far as we can see, static typing wouldn’t bring any benefits here, as the
success or failure of translate depends entirely on the contents of the Registry,
and the Registry is, by its very nature, dynamic, and so not easily attacked with
static typing.

Even if one created a type system that could check in advance whether ap-
plying a translator with a given Registry was guaranteed to succeed in all its
translations, this would not buy very much, as the type checking would still have
to be done at runtime, when the contents of the Registry was known.

One might similarly question why translators are managed as a set of func-
tions conforming to a standard signature, rather than having them as imple-
mentations of a standard class operation. This is due to the desire to be able to
manage several different translations between the same two types.

7 Editable Objects

At the foundation of the translator system is the CB monad. Translators may be
written directly in terms of this monad, or in some form that can be translated
into the CB monad.

The CB monad allows one to do several important things:

– Create an editable object (Var)
– Read an editable object
– Write to an editable object
– Cause a callback procedure to be executed whenever an object is written to
– Cause a procedure to be executed in the background

The types and operations involved in the CB monad are given below.

data CB a = -- abstract
data Var a = -- abstract
data Sched = -- abstract

(>>=) :: CB a -> (a -> CB b) -> CB b
return :: a -> CB a
new :: a -> CB (Var a)
read :: Var a -> CB a
write :: Var a -> a -> CB ()

react :: (a -> CB Bool) -> Var a -> CB ()

later :: CB () -> CB ()
newsched :: CB () -> CB Sched

The abstract type CB a is a description of an operation that performs some
imperative actions, and finishes with a result of type a. One can thus think of
a monadic function of type a -> CB b, as being analogous to an imperative
procedure with argument type a and result type b. As with the IO Monad [11],
operations in the CB monad can only be executed by the outside environment,
and not directly from within Oval evaluations.

The abstract type Var a is an editable variable with contents of type a. This
is very similar to a BVar in FranTk [13], and to MutVar in the ST Monad [12].
The first five functions are all operations on these types, and are equivalent
to similarly named functions in the ST Monad. new creates a new Var, and
returns an identifier it. read obtains the current value of a Var. write stores a
new value in a Var. return does nothing, and returns the given value. As with
other monads, do notation can be used as a convenient shorthand for >>=.

react is a particularly important command. It allows one to request that
a given procedure be executed when the given Var is written to. The callback
procedure returns a boolean value that says whether it wishes to stay attached
to the Var, and be executed in response to subsequent writes.

In order to make concurrent programming easier and avoid the need to worry
about locking data structures, all callbacks are executed as atomic transactions
using two phase locking [14].

newsched and later are used in special cases, and are discussed later.
We can now define some useful functions. Some of these were used in earlier

examples, and some of these are used later.

update :: (a -> a) -> Var a -> CB ()
update f v = do{x <- read v; write v (f x)}

Update a Var by applying a function to its value.

reactalways :: CB () -> Var a -> CB ()
reactalways act v = react (_ -> do{act; return True}) v

A variant on react, where we ignore the argument, and never cancel the
callback.

8 Some Example Translators

A translator from type a to type b has type Registry -> a -> CB b. The
Registry argument allows the translator to apply translate to any sub-objects
within the object it is translating.

We have already given a translator from numedit into an abstract UI. We will
now give as examples, the translators that translate the result of numedit ui
into a form that can be used by the GTK [17] target. The GTK target requires
the GUI to be described in the form given below. For reference, the types used
in the result of numedit ui are repeated here also.

data GtkItem = GtkButton String (Var ()) | GtkText (Var String)
| GtkHGroup [GtkItem] | ... -- further parts omitted

data Number = Number (Var Int)
data Action = Action String (CB ())
data Group = Group [Dynamic]

8.1 A Translator for Action

We will start out with the translator for Action. This needs to take an object
of type Action, and produce a corresponding GtkItem object.

1: acttogtk :: Registry -> Action -> CB GtkItem
2: acttogtk reg (Action name proc) = do
3: ubv <- new ()
4: reactalways proc ubv
5: return $ GtkButton name ubv

In this case, we are translating actions into GTK buttons. We could chose
to translate actions into anything we liked, but buttons seem to be the most
appropriate mapping. The button we produce has a label equal to the name of
the action, and clicking on the button causes the action to execute its callback
procedure.

The GTK Button constructor contains a string, and a Var (). The string
is the name of the button, and the Var () is a variable that the button writes

to whenever it is pressed. Although the Var doesn’t change value, writing to it
causes any attached callbacks to be executed. One can thus cause a procedure
to be executed whenever the button is pressed by making it react to the Var.

8.2 A Translator for Number

Number is slightly more complicated to translate. While our chosen set of GTK
primitives doesn’t contain a number editor, it does contain GtkText, a basic
string editor.

The GTK widget displays the contents of the text string, and allows the user
to edit the string. When the user edits the string, the new value is written to
the Var String. When the value of the Var String changes, the GTK widget
updates accordingly.

In order to use this widget to edit an Var Int, we need to translate changes
in both directions. When the int changes, we want to update the string to contain
the string representation of the integer. Likewise, when the string changes, we
want to update the integer to contain the integer the string represents.

When doing these updates, we need to be careful to not cause circular up-
dates. That is, if a change to the int causes a change to the string, we don’t
want this to cause another change to the int, which causes the process to repeat
again. Fortunately the Feris standard library has a set of functions (implemented
in Feris) that make avoiding such loops very easy. One of the most common of
these functions is link.

link produces a destination object from a source object, and keeps the two
in sync with each other using two update procedures. Each update procedure is
called when one of the objects changes, and returns the new value for the other
object. When one of the update procedures has finished executing, link writes
the return value to the updated object in such a way as to not trigger the other
update procedure.

1: numtogtk :: Registry -> Number -> CB GtkItem
2: numtogtk reg (Number num) = do
3: text <- link (lift tostring) (lift fromstring) num
4: return $ GtkText text

8.3 A Translator for Group

The code below is a translator for the Group type. We wish to translate Group
into the GtkHGroup constructor. This requires us to translate all of the members
of the Group (which are of type Dynamic) into type GtkItem. Translators are
passed a copy of the translator registry, and so are able to do this by simply
applying translate to each of them.

1: grptogtk :: Registry -> Group -> CB GtkItem
2: grptogtk reg (Group l) = do
3: mems <- mapM (translate reg "gtk") l

group

number action action

gtkitemgtkitem gtkitem

gtkitem

grptogtk

numtogtk acttogtk

group

gtkitem

grptogtk

Fig. 6. Translating a Group - with internal translations

5: let ud = map tryundy $ filtermaybe mems
6: return $ GtkHGroup $ filtermaybe ud

In a more complete translator for Group we would want to decide what kind
of group layout to use in a more intelligent way, and perhaps allow the user to
adjust it, however this simplistic approach gives an easier example.

Figure 6 shows the internal and external views of this. From the outside, it
appears that this translator is just translating a Group into a GtkItem. However,
when one looks inside, one can see that the entire translation system is being
applied recursively within the group translator.

link :: (a -> CB b) -> (b -> CB a) -> Var a -> CB b
lift :: (a -> b) -> a -> CB b
fromstring :: String
tostring : Int -> String
tryundy :: Dynamic -> Maybe a -- unpack a dynamic type
filtermaybe :: [Maybe a] -> [a] -- strip out empty items

9 Composing Things Together

In Feris, one is encouraged to use translators as the basic building block of
modular GUIs. To demonstrate what is meant by this, we will use as an example,
an application that has two instances of the numedit GUI, with the values of
the two ints being such that one is always 10 greater than the other.

The source code for this application is given below, and a screenshot of it
running is given in figure 7.

data TwoNum = TwoNum (Var Int)

twonum_ui :: Registry -> TwoNum -> CB VGroup
twonum_ui _ (TwoNum num) = do

nummore <- link (lift \x -> x+10) (lift \x -> x-10) num

Fig. 7. The TwoNum App as a GTK GUI

return $ VGroup[dy $ NumEdit num,dy $ NumEdit nummore]

twonum_app :: CB TwoNum
twonum_app = do

num <- new 123
return $ TwoNum num

One might be tempted to call numedit ui directly from within twonum ui
rather than allowing the translator registry to arrange the call (as shown below).
This should be avoided as it makes the resulting program less flexible, preventing
the application being used separately from the number edit gui.

... return $ VGroup[dy $ numedit_ui $ NumEdit num, ...

10 Some Other Targets

So far the only target we have explored is the GTK GUI target. We will now
give a brief summary of some of the other targets supported by Feris. While
there is not space in this paper to give detailed explanations of these targets,
the information provided should be enough to give the reader a feel of how these
targets work. Screenshots of the targets discussed are given in figure 8.

Fig. 8. Screenshots of the Graphics, Web, and File targets

10.1 Graphics

So far, we have only been working with basic controls such as edit boxes and
buttons. While these are sufficient for simple examples, one often wants to be
able to create a custom graphical interface.

This can be done using the graphics target. The low level type for the graphics
target is given below. We use a procedure that produces a changing set of shapes,
given some inputs (e.g. mouse and keyboard), and the shape of the visible area.
These GdkTarget objects can be embedded inside GTK GUIs, using the GtkGdk
constructor.

data Vlist = ... -- List such that the contents can change
type Shapes = VList Shape
data GdkTarget = GdkTarget (Inputs -> Area -> CB Shapes)

data GtkItem = ... {- shown before -} | GtkGdk GdkTarget | ...

The graphics object provides a changing list of graphics primitives that are
to be drawn (VList is similar to ListB in FranTk[13]). It is up to the GDK
environment to make sure that only the minimum set of graphics primitives are
redrawn, to avoid flicker during redraws, and do other similar things.

10.2 The Web

Another important target is the web. Not all interface concepts have a sensible
web representation, but when there is a sensible representation, this system
allows it to be used. The low level format used by the web environment is given
below. Given the URL to fetch, and any form parameters, a procedure returns
a procedure that provides the relevant file.

data FormParams = FormParams of [(String,String)]

datatype WebSite = WebSite of Url -> FormParams -> CB (CB File)

The layer of indirection (“CB (CB File)” rather than “CB File”), is impor-
tant. The web target runs the first procedure, waits for all resultant callbacks
to have executed to the user requesting that page, and then runs the second
procedure to actually get the page. This is needed due to the fact that Feris
callbacks are executed as atomic transactions, rather than immediately.

The UI elements used by numedit ui can be easily translated into a web
interface (as shown in figure 8). One will however generally get better results
if one translates from something higher level. For example, one might translate
NumEdit directly into so JavaScript[5] code that manages an editable number.
One of the advantages of the Feris model is that one can do the translation at
whatever level one likes.

10.3 Files

Files are treated as just another target. To allow saving of a data type, one need
simply provide a translator from that data type to an array of bytes that is to
be stored in the file.

Applications do not have direct access to the file system. There are no equiv-
alents of readFile and writeFile (from the IO monad [11]). The only way in
which an application can access a file is by having some of its data translated
into one.

This approach gives all applications load, save, copy, paste, and undo com-
pletely for free. The environment knows how to perform these operations on files,
and so can indirectly perform these operations on anything that can be trans-
lated into a file. The writer of an application does not have to think about these
features in order to obtain them. For example, under a suitable environment,
the numedit app app is able to load, save, copy, paste and undo its number.

Inside the GTK GUI environment, it is useful to have a popup button next to
any object that we can translate into a file, providing operations such as “load”
and “save” (see figure 8). This requires the GTK target to be made aware of the
file, using the GtkFile constructor of the GtkItem type. An enhanced translator
from Group to GtkItem tries to produce a file for all of its members as well as a
GUI, by applying translate twice.

data GtkItem = ... {- shown before -} | GtkFile File GtkItem | ...

As with other targets, one tends to get the best results if one translates from
as high level a target as possible. For example, if one had a file translator for
numedit but not twonum, then twonum would translate into a file by first being
translated into a group of numedits and then using the file translator for group
to save it as two numedits. This takes up twice as much space as if one were to
explicitly provide a translator from twonum to a file.

In addition, one might want to translate to a higher level target than a raw
file. For example, if one translated to a target that was able to store incremental
differences between versions, then “undo” could be implemented more efficiently.

The translator approach to files also brings security advantages as applica-
tions can only access files that the user has explicitly given them. The top level
environment is assumed to be trusted code, and to only access files when the
user tells it to.

11 More on Callbacks

11.1 Callbacks as Transactions

A callback procedure is executed as an isolated transaction [14]. While several
callback procedures may be running concurrently, they must be executed in such
a way that their execution is equivalent to how it would be if only one callback
ever executed at a time. This is currently implemented using a two phase locking
model [14].

It should be noted that the CB monad does not provide the full power of
the IO Monad [11]. In particular, it does not allow direct interaction with the
outside world through routines like putChar and getChar. This is important, as
it allows all CB monad operations to be rolled back if a transaction fails, and so
makes a transaction based implementation practical.

Calls to the callback procedures have the following properties:

– If react is called several times with the same arguments, then several inde-
pendent callbacks are set up.

– The callback procedure will be called exactly once for every write to the Var
it is attached to, until the procedure returns False.

– After the callback returns False, it will not be called again.
– The argument to the callback is the value written to the Var in the write

that the callback is reacting to.
– The callback will be called for each write in the order in which the writes

took place.
– The argument to the callback is NOT guaranteed to be the current value of

the Var. It is possible that there may have been further writes to the Var
before the callback was serviced.

11.2 The “newsched” command

newsched :: CB () -> CB Sched

Normally, all transactions are executed in the order in which they were trig-
gered. However sometimes this isn’t what we want. Take for example the case
where we want to perform a long slow execution in the background (e.g. render-
ing an image).

If all subsequent transactions were required to execute logically after the
render had finished, then none of them would be able to commit until after the
render had finished. If no callbacks commit, then no output can be made visible
to the user and the system would appear to freeze. This is clearly undesirable.

One way to avoid this problem is to use newsched. newsched creates a new
scheduler which executes the procedure given as its argument. Any callbacks set
up by this procedure will also be executed inside this new scheduler. Note that
the scheduler that a callback is executed by is determined by the call to react
that set it up, and not by the call to write that set it off.

While transactions within one scheduler are constrained to execute in a fixed
order, there is no fixed order for the execution of transactions in different sched-
ulers. The system is thus free to schedule and roll back transactions so as to
maximise responsiveness. In the case cited earlier, one could run the renderer in
a new scheduler, allowing the the system to schedule the small operations as if
they were before the big operation. The small operations would now be able to
commit, at the cost of requiring the big operation to restart if a small operation
wrote to something the big operation had read from.

One way to avoid such restarts of our large operation is to have a transaction
that reads the input parameters, and then creates another transaction (using

main queue (FIFO) later stack (LIFO)

Fig. 9. The Two Scheduler Queues

newsched) that does the computation and writes back the result values. This
allows other operations to be scheduled as being before the main operation with-
out requiring it to be rolled back if they write to one of its inputs. The downside
is that the output may be inconsistent with the current input.

11.3 The “later” command

later :: CB () -> CB ()

Sometimes one wants some code to be execute at some point later, after
other callbacks have had a chance to run. One example is a program that writes
to some Vars, and then wants to look at how other Var have adapted to this
change.

later asks for a procedure to be executed when the scheduler has nothing
else left to execute. This is done through the use of two scheduler queues that
govern the order in which transactions are executed. Most work to be done (e.g.
callbacks reacting to a write) is put on the main FIFO (first in first out) queue.
When the main queue becomes empty, the scheduler takes something from the
later stack. This stack is LIFO (last in first out), thus anything put onto the
later stack is guaranteed to be executed after everything currently on the main
queue, and also after any later procedures that are put onto the later stack
by procedures on the main queue. This is illustrated in figure 9.

12 Related Work

The basic reactive programming model of Feris is similar to many previous sys-
tems, especially FranTk[13]. Other examples of GUI libraries for functional lan-
guages include Fudgets [3], GTK+/Haskell [18], Haggis [7] and Gadgets [9].
However, unlike these systems, Feris is based on transactions, and supports in-
terfaces other than GUIs, through its translator system.

Outside the field of functional programming, many GUI programming sys-
tems have attempted to separate presentation from modeling. Popular examples,
include COM/OLE/ActiveX [4] and Java’s Swing [19]. However these are still
very GUI specific and very coarse grained.

Also very relevant are XML [2] and XSL [1] which try to do similar things to
Feris but with static descriptions rather than with changing interactive objects.

Acknowledgements

Enormous thanks must go to Simon Peyton-Jones, who supervised this project,
and provided many useful suggestions. I would also like to thank Alan Mycroft,
Søren Lassen, and Andy Gorden, who helped me with my early work in this
field.

References

1. S. Adler, A. Berglund, et al. Extensible Stylesheet Language (XSL) Version 1.0
Working Draft. http://www.w3.org/TR/xsl

2. T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible Markup Language (XML)
1.0 Specification. http://www.w3.org/TR/REC-xml

3. M. Carlsson, T. Hallgren. Fudgets - Purely Functional Processes with applications
to Graphical User Interfaces. Phd Thesis, Chalmers University.

4. A. Denning. ActiveX Controls Inside Out (2nd Ed), 1997
5. B. Eich, C.R. Rand McKinney. JavaScript Language Specification (preliminary

draft), 1996 http://home.netscape.com/eng/javascript/
6. C. Elliott and P. Hudak. Functional Reactive Animation. Proceedings of the 2nd

ACM SIGPLAN International Conference on Functional Programming 1998.
7. S. Finne, S. Peyton Jones. Composing the user interface with Haggis. Summer

School on Advanced Functional Programming, 1996.
8. R. Milner, M. Tofte and R. Harper. The Definition of Standard ML. MIT Press

1997.
9. R. Noble, C. Runciman. Gadgets: Lazy Functional Components for Graphical User

Interfaces. Proceedings of the 7th International Symposium on Programming Lan-
guages, Implementations, Logics and Programs, 1995.

10. S.L. Peyton Jones, J. Hughes et al. The Haskell 98 report. www.haskell.org. 1999.
11. S.L. Peyton Jones and P. Wadler. Imperative Functional Programming. Proceed-

ings of the 20th ACM Symposium on Principles of Programming Languages 1993.
12. S.L. Peyton Jones and John Launchbury. State in Haskell. Lisp and Symbolic

Computation 1995.
13. M. Sage. FranTk - A Declarative GUI System for Haskell.

http://www.haskell.org/FrantTk/userman.pdf
14. A. Thomasian. Concurrency Control: Methods, Performance, and Analysis. ACM

Computing Surveys, Vol 30, March 1998.
15. T. Vullinghs, W. Schulte, and T. Schwinn. An Introduction to TkGofer. Technical

Report 96-03, University of Ulm, 1996.
16. P.L. Wadler. Comprehending Monads. ACM Principles of Programming Lan-

guages, 1990.
17. The GIMP Toolkit. http://www.gtk.org
18. A GTK+ Binding for Haskell.

http://www.cse.unsw.edu.au/~chak/haskell/gtk/
19. Java. http://java.sun.com

