
MashMaker: Mashups for the Masses

Rob Ennals
Intel Research Berkeley

robert.ennals@intel.com

Minos Garofalakis
Yahoo Research

minos@yahoo-inc.com

Categories and Subject Descriptors: H.4.3 [Information Systems
Applications]: Information Browsers
General Terms: Management, Design, Human Factors, Languages
Keywords: Mashup, web, end-users.

1. INTRODUCTION
MashMaker is an interactive tool for editing, querying, manip-

ulating, and visualizing “live” semi-structured data. MashMaker
borrows ideas from word processors, web browsers, and spread-
sheets. Like a word processor, MashMaker allows ad-hoc, un-
structured editing of data. Like a web browser, MashMaker en-
courages users to find information by exploring, rather than by
writing queries. Like a spreadsheet, MashMaker allows users to
mix computed values with their data, including editing “live” (i.e.,
continuously-updated) data assembled through the web and/or user
queries. MashMaker represents a novel paradigm for the ad-hoc ex-
ploration and management of diverse, heterogeneous collections of
live data, that draws on the design principles of more “natural” soft-
ware tools (like web browsers and spreadsheets) and simple script-
ing languages, rather than formal database models, schemas, and
queries.

The goal of MashMaker is to allow non-expert users to easily
create their own mashups based on data and queries produced by
other users and by remote sites. Non-expert users often have lots of
data that they would like to be able to query and otherwise manip-
ulate. For instance: “Which of these houses has the largest number
of good restaurants nearby?”, “Do any of these news stories affect
people I know?”, “Show me a map with the addresses of every-
one with my surname” or “How much would each of these recipes
cost to make if I bought the ingredients in Safeway?” Right now,
performing these kinds of queries and sharing them with others is
possible, but not easy. The goal of MashMaker is to make such
tasks easy and intuitive.

MashMaker is designed around the following key principles:
• Untyped Tree Data Model: Data is structured as a tree,

where nodes have content, child nodes, and properties. There
are no constraints on the form of the tree.

• Mixed Data and Queries: Users can extend/enhance their
view of the data by adding computed nodes whose values are
computed based on the surrounding data.

• Sharing Queries as Widgets: Useful queries can be bundled
and exported as “widgets”. If a user computes something
interesting over their data, they can then choose to turn the
query into a widget and share it with their friends.

Copyright is held by the author/owner(s).
SIGMOD’07, June 11–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

Properties

Children

Search Box

Property

Selected Widget
Properties

Search Results

Info Toggle

Selected Widget
Properties

View

Arg Formula

Figure 1: The MashMaker Interface.

• Overlayed Editing of Live Data: Users can apply local ed-
its to their data views (including query results). These edits
are treated as an overlay (or, an incremental edit script) on
top of the data, allowing the data to be updated while pre-
serving user edits.

• Example-Driven Queries based on Interactive Data Ex-
ploration: Users never have to think about textual queries in
a formal query language. Instead, all queries and data ma-
nipulation tasks can be formulated through interactive data
browsing and exploration. Query tasks can also be specified
by example; for instance, to compute a property for a collec-
tion of data elements, a user can compute that property for
one element, and then copy the property to other elements in
the tree (e.g., the node’s siblings).

• Collaborative Exploration of Data: Users can share data
and widgets with friends and other members of their social
network. During data exploration, MashMaker can automat-
ically suggest widgets that have been applied to similar data
inside the user’s social network.

MashMaker differs from previous work on personal information
management [1, 3, 2] through its focus on ad-hoc, interactive data
exploration and manipulations, rather than structure extraction and
support for just querying the data. MashMaker improves on pre-
vious tree-structured spreadsheets [4] through its support of live
data and query results, its ability to package up queries as widgets,
its support for user collaboration and sharing, and its exploration-
based, formula-free query model.

Figure 1 shows a screenshot of the MashMaker interface run-
ning as an AJAX application within the FireFox web browser. The



left-hand portion of the window is taken up by the data tree which
contains the user’s data. On the right, we see the widget pane con-
taining a widget search box, and configuration information for the
selected node. The widget pane can be collapsed by clicking on the
toggle button at the top (Figure 2).

2. ARCHITECTURE
In this section, we provide more detail on the MashMaker system

architecture, focusing on the six key designed principles outlined in
Section 1.

2.1 Untyped Tree Data Model
All data in MashMaker is structured in the form of a tree. Each

node in the tree has content, child subtrees, and a set of properties,
where each property is a pair of a name and a subtree. Following
the design paradigm of spreadsheets or scripting languages, Mash-
Maker has no formal data schema and the tree is permitted to take
an arbitrary form. While it is certainly the case that not all queries
can be applied to all data, data mismatch issues are explained at
query time, rather than ahead of time. The content of a node can be
either text or a visualization (Figure 2).

2.2 Mixed Data and Queries
Like a spreadsheet, MashMaker does not separate derived query

results from data. To compute a value from some data, a user can
insert a node directly into the MashMaker tree, and define the value
of the node using a formula written in terms of the surrounding
data. (While expert users can explicitly specify such formulae,
non-experts typically express data-manipulation tasks through in-
teractive data exploration and browsing, as discussed later in this
section.)

A node’s formula defines not only the content of the node, but
also its child nodes and properties. For instance, in the MashMaker
interface in Figure 1, the “food nearby” formula evaluates to a
tree that contains nodes for nearby restaurants and their properties.
MashMaker also distinguishes between direct nodes which have
their own formula, and derived nodes which are defined through
the formula of a parent.

Much like a spreadsheet formula, a MashMaker formula is ei-
ther a literal (just some text), or an expression (starting with an “=”
sign). An expression is either a path to another node relative to
the current location in the tree, or a function application taking fur-
ther formulae as arguments. Since a formula can contain relative
paths to other nodes, its value depends on the location at which it
is evaluated. Some simple example formulae include:

• Hello : The literal string “Hello”.

• =boss.age : The value of the “age” property of the “boss”
property.

• =Weather(=country) : The weather in the place referred to
by the “country” property.

Once again, note that non-expert users can specify such formu-
lae interactively through browsing over the MashMaker tree (with
no knowledge of the formula syntax). Expert users can however
enable a formula box that allows them to type in node formulae
directly.

2.3 Overlayed Editing of Live Data
Following the spreadsheet model, all data is editable, including

computed nodes generated through queries. A user can generate
a subtree with a query, and then modify it by editing, adding, and
deleting child nodes. Since MashMaker data and queries are live,

Suggested Widget

Figure 2: View with the widget pane collapsed

the results of the query can dynamically change over time. When
the base data changes, MashMaker does not lose the user’s edits.
Instead the edits are treated as an overlay (essentially, an edit script)
which is reapplied to the base data when changes arrive. It is impor-
tant to note that any edits made by the user stay local to the user’s
view — no attempt is made to propagate changes to the original
source data.

2.4 Query Widgets
A query widget is the combination of a function with associated

metadata. The function takes formulae as arguments and produces
a subtree as a result. The metadata includes a description of what
the widget does, an icon to be used for nodes defined by the widget,
and a optional custom interface for configuring it.

Users can search for widgets by typing keywords into the widget
search box (Figure 1). MashMaker will also automatically suggest
widgets that it believes may be applicable (Figure 2). This sugges-
tion is based on what widgets other users have applied to similar
data, where data similarity is determined using several different cri-
teria (e.g., the data was created by the same widget, or has similar
structure and/or properties). For example MashMaker might sug-
gest “distance” if there are two addresses in scope, suggest “map
locations” for a list of nodes with addresses, or suggest “find home
page” for a person’s name.

MashMaker query widgets generally fall into one of four cate-
gories:

• Importers import data into MashMaker from an external
source; for example, listings from Craigslist or email ad-
dresses from Outlook.

• Visualizers define a node whose content is a visualization;
for example, showing locations on a map, plotting a graph,
or representing a list of nodes as an editable spreadsheet.

• Evaluators define a new subtree in terms of existing sub-
trees; for example, “Sum these numbers”, “Filter this list”,
or “Find the distance between these two addresses”.

• Extractors find structure in unstructured data; for example,
“Find Address” or “Make this house description canonical”.

A widget can be created as a builtin widget (i.e., system-provided
for a certain data type), an extension widget, or a custom widget.
Extension widgets are written as web services which MashMaker
connects to. Custom widgets are defined by the user in terms of
other widgets.



Users can create a custom widget by wrapping up a query that
they have already performed. To create a widget, a user selects the
node that holds the result of the query, and then clicks the “New
Widget” action from the action panel. MashMaker now prompts
the user to specify the name of the widget, the widget’s description,
an icon, hints on where to apply the widget, and what to do with
each of the other nodes that the selected node depends on. There
are two ways that MashMaker can treat a node that the result node
depends on: (i) Local: The node is internal to the widget; or (ii)
Argument: The value of the node must be specified as an argument
to the widget. This is very similar to creating a function in a pro-
gramming language by copying an expression and deciding which
of the other expressions it depended on should be copied across as
well. As with Apple’s Dashboard Widgets, a user can create their
own custom configuration interface for their widget if they like.

Once a user has defined a custom widget, they can publish it
to the world, or share it more locally with their friends and other
members of their social network.

2.5 Exploration- and Example-Driven Queries
MashMaker enables non-expert users to query their data through

interactive data exploration and browsing, rather than by writing
abstract queries. If the user selects a node that they are interested
in, then MashMaker can suggest a set of query widgets that it thinks
might produce interesting information from that node and the nodes
around it (Section 2.4, Figure 2). This model allows the user to ca-
sually browse around their data, applying widgets to the data they
have, and browse and query the data produced by the widgets, until
they eventually run into something they find interesting and possi-
bly bundle this up as a widget to share with others. Like the web,
MashMaker allows users to absent-mindedly wander through their
data in the hope of running into something interesting.

Note that, while users have the ability to specify queries by en-
tering formulae directly into a formula box, the intention is that
most users will not use this feature, and indeed that it will usually
be turned off.

MashMaker also enables users to casually specify operations
over collections of data by example. For instance, much like us-
ing a spreadsheet, a MashMaker user can query a collection of el-
ements by first defining a query for an individual element and then
copying this query to all elements in the collection. To do this, the
user can browse into a node, define new computed nodes with the
property that they are interested in for just that node, and then ap-
ply a “copy to all” action to copy the new property to all sibling
nodes. As an example, if my data is a list of houses, I might browse
into one house, use a “Crime Level” widget to compute a property
node whose value is the crime level near that house, and then use
the “copy to siblings” action to give all other houses a crime level
property. I might then use the “Sort” widget to create a new copy
of the house list that is sorted by crime level.

Note that, since MashMaker data is live, the “copy to all” ac-
tion does not just copy the selected property to the current siblings,
but to all future siblings as well. If the data is updated to include
additional sibling nodes, then the property is copied into them as
well. The underlying model behind this is that every node contains
a (normally) hidden #prototype property that contains properties
that should be copied to new siblings.

2.6 Collaborative Exploration
MashMaker allows users to collaboratively share and explore

data and queries. Users can share data, widgets, and widget sugges-
tions — all using a simple social network dynamically maintained
by MashMaker. If a user has created some data that they think

might be of interest to their friends, they can then publish this to
their friends, either as writable or read-only data. This allows users
to create their own ad-hoc social-networking applications, making
use of data published by friends to define data they publish them-
selves. Similarly, users can share widgets they have created, and the
set of MashMaker-suggested widgets dynamically adapts based on
the widgets shared/used across a user’s social network.

3. DEMONSTRATION SCENARIO
The user is planning to rent a house, and wants to know which of

the houses available has the most good restaurants nearby. First, the
user goes to a housing website and clicks the “Add to MashMaker”
icon on their browser bookmark bar. MashMaker starts up and the
list of houses on the website is displayed in the data tree, with one
node for each house, and the properties of each house reflecting the
information provided.

The user selects one of the house nodes, and MashMaker auto-
matically suggests that the user apply the “Things Nearby” widget
to search for things nearby. The user clicks on this suggestion and
is presented with a query box to allow them to configure the query.
MashMaker has automatically filled in the address of the house as
the location to search from and the user enters “food” as what they
want to search for, and “food nearby” as the property name.

Seeing this list, the user decides that they would like to know
how many restaurants there are within 0.5 miles with a rating of
three stars or higher. The user clicks on the “filter” widget (which
MashMaker automatically suggested) and uses the filter widget’s
custom interface to set up these criteria. They then use the “count”
widget, to count how many restaurants meet this criteria, calling it
“restaurant count”. They then click “copy to all” to give all the
other houses a “restaurant count” property, allowing the user to
compare the houses.

The user decides that this “restaurant count” property is use-
ful, so they click the “make new widget” to save this property as
a widget that they can again use in the future. MashMaker asks the
user which of the values “restaurant count” depended on should be
treated as arguments, and the user selects the house, and the kind of
thing being searched for. The user types a description, uploads an
icon, and publishes the new widget. Now, the next time one of the
user’s friends looks at a house, this new widget will be suggested.

The user goes on to create additional widgets that compute the
number of the user’s friends that live within a mile of each house,
and the user’s commute time to work for each house. The user then
plots all the houses on a map, color coded according to how they
rate on these scores.

4. REFERENCES
[1] CAI, Y., DONG, X., HALEVY, A. Y., LIU, J., AND

MADHAVAN, J. Personal information management with
semex. In SIGMOD Demo Program (2005).

[2] FAABORG, A., AND LIEBERMAN, H. A goal-oriented web
browser. In CHI Proceedings (2006).

[3] FRANKLIN, M., HALEVY, A., AND MAIER, D. From
databases to dataspaces: A new abstraction for information
management. In SIGMOD Record (2005).

[4] TAKEICHI, M., HU, Z., KAKEHI, K., HAYASHI, Y., MU,
S.-C., AND NAKANO, K. TreeCalc: towards programmable
structured documents. In Japan Society for Software Science
and Technology (2003).


